Bio-based solvent helping develop UK’s first industrial-scale car battery recycling project


Biotechnology company Circa Group, who produces bio-based solvent CyreneTM from waste cellulose, is participating in an innovative project aimed at developing the first UK industrial scale capability to reclaim and reuse the most valuable components of end-of-life electrical vehicle (EV) batteries. The R2LIB (Reclamation, Remanufacture of Lithium Ion Batteries) project is funded by UK Research and Innovation through the Faraday Battery Challenge – an initiative aimed at developing cost-effective, high-performance and recyclable automotive batteries.

 

According to the IEA, the global electric car fleet exceeded 5.1 million in 2018 and is estimated to reach at least 130 million by 2030. This exponential growth is expected to lead to several millions of tonnes of spent batteries in need of recycling over the next 10 years or so. R2LIB looks to tackle this challenge by establishing a new, UK supply chain for extracting and reprocessing high-value components from end of life EV batteries.

 

Circa’s solvent CyreneTM is specifically being used to recover polyvinylidene fluoride (PVDF) – a high performance polymer widely used as a binder in Li-ion battery cathodes. PVDF processing currently relies on the use of NMP – a reprotoxic solvent, which is under intense regulatory pressure. By using CyreneTM, R2LIB is helping recover a valuable polymer in a sustainable way.

 

As part of R2LIB, Circa is working with the University of York (who helped develop CyreneTM) and a number of other partners including M-Solv (laser & robot modules for automatic handling and dismantling of batteries), ICoNiChem (recovery of cobalt, nickel and manganese), PV3 Technologies (recycled cathode production) and WMG (national facility for battery R&D).

 

Dr Rob McElroy of the University of York, who is a researcher on the R2LIB project, stated: “A wide range of solvents have been investigated for the dissolution of battery grade PVDF. Very few have proved able to dissolve this high molecular weight polymer, with Cyrene being one. Early results looking at recovery from spent electrodes have indicated Cyrene’s unique properties are proving useful in separating PVDF from other black mass materials.”

 

Tony Duncan, CEO and co-founder of Circa Group, said: “We are proud of being part of a project looking to create a more sustainable automotive economy. Our bio-based solvent CyreneTM is once again proving to be a high-performing and more sustainable alternative to traditional solvents.”

 

www.circagroup.com.au

Related articles:

New energy-efficient method for recycling lithium-ion batteries

Researchers at Linnaeus University have developed a more environmentally friendly way of retrieving cobalt from used lithium-ion batteries. With a liquid solvent made of readily available substances,...

more

Stena Recycling opens industry scale battery recycling plant in Europe

Stena Recycling inaugurated its first industrial recycling facility for lithium-ion batteries, an investment of a quarter of a billion SEK. It is situated in south of Sweden and one of the first...

more
Issue 06/2021 Commissioning of stage 2 now underway

Construction of battery recycling demonstration plant completed

The battery recycling joint venture between Australian Securities Exchange listed Neometals Ltd (ASX:NMT) and SMS group, a privately owned German plant manufacturer, plans to recover all the LIB...

more

Freyr Battery and Stena Recycling sign agreement

In connection with the opening of its battery recycling facility, Stena Recycling announces a new industrial scale customer within battery production. Stena Recycling and Freyr Battery have entered an...

more

Metso Outotec to supply sustainable solvent extraction technology for battery recycling process in US

Metso Outotec has signed an agreement with Li-Cycle North America Hub Inc. for the supply of manganese, cobalt, and nickel solvent extraction technology for a battery recycling plant to be built in...

more